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Abstract. SPRING is a family of pseudo-random functions that aims to
combine the guarantees of security reductions with good performance on
a variety of platforms. Preliminary software implementations for small-
parameter instantiations of SPRING were proposed at FSE 2014, and
have been demonstrated to reach throughputs within small factors of
those of AES. In this paper, we complement these results and investigate
the hardware design space of these types of primitives.

Our first (pragmatic) contribution is the first FPGA implementation
of SPRING in a counter-like mode. We show that the “rounded product”
operations in our design can be computed efficiently, reaching through-
puts in the hundreds of megabits/second range within only 4% of the re-
sources of a modern (Xilinx Virtex-6) reconfigurable device. Our second
(more prospective) contribution is to discuss the properties of SPRING
hardware implementations for side-channel resistance. We show that a
part of the design can be very efficiently masked (with linear overhead),
while another part implies quadratic overhead due to non-linear opera-
tions (similarly to what is usually observed, e.g., for block ciphers). Yet,
we argue that for this second part of the design, resistance against “sim-
ple power analysis” may be sufficient to obtain concrete implementation
security. We suggest ways to reach this goal very efficiently, via shuffling.
We believe that such hybrid implementations, where each part of the de-
sign is protected with adequate solutions, is a promising topic for further
investigation.

1 Introduction

The quest for secure and efficiently implemented primitives is an ongoing process
in cryptography. In the symmetric setting, recent research has led to the devel-
opment of many standard and lightweight block ciphers. As recently surveyed
during the “Crypto for 2020” workshop, current design approaches have been
quite successful in optimizing these primitives for various performance metrics,
which has led to their deployment in numerous applications [29,31]. Yet, and
although the problem of symmetric encryption may sound solved, at least two
important (apparently unrelated) problems remain open.

First, from a theoretical point-of-view, there is still a large gap between the
formalism used to argue about security in symmetric cryptography (mainly based
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on cryptanalysis) and the one in asymmetric cryptography (which widely relies
on security reductions). While we do not wish to make statements about which
approach should currently be privileged and for what application, we believe
that any attempt at closing the gap between these two approaches is interest-
ing, since there seems to be no contradiction between implementation efficiency
and security reductions from well-understood problems. Note that closing such
a gap can naturally benefit both from better security analysis tools for already
deployed constructions (as followed by the recent line of research about key al-
ternating ciphers [2,5,6,17,18]) and from “provably secure” constructions leading
to efficient implementations, as we pursue in this paper.

Secondly, although block ciphers that perform well on various types of plat-
forms are now mainstream, the problem of securing their implementations against
physical (e.g. side-channel) attacks is still quite open. Indeed, the performance
overhead caused by standard countermeasures against such attacks (like mask-
ing [11,14,27,28] or shuffling [15,33]) are still significant, and the physical assump-
tions for these countermeasures to provide the expected security improvements
are sometimes hard to achieve. (See for example the discussions in [8,22,25].)

Interestingly, and despite looking disconnected, these two problems share a num-
ber of (intuitive) similarities, and progresses with respect to one of them could be
a source of improvement for the other one. The main reason for this intuition is
that one of the main elements that makes asymmetric cryptographic primitives
easier to prove by reduction is their more elaborated mathematical structure. But
mathematical structure (in particular, certain types of homomorphisms) is ex-
actly what sometimes makes the protection of asymmetric implementations eas-
ier, at least from a conceptual point of view [7,16]. As a result, one can generally
expect that, as the physical security level of implementations increases, the perfor-
mance gap between symmetric and asymmetric primitives vanishes. Two recent
examples illustrate this hope, namely the masked implementation of the Lapin
protocol in [10] and the leakage-resilient MAC in [23]. Unfortunately, both works
have some limitations. In the first case, the execution of Lapin requires random-
ness that seem difficult to protect against side-channel attacks (and was excluded
from the physical security analysis so far). In the second case, the MAC relies on
quite expensive pairing operations which implies (constant but significant) over-
head that dominate the implementation cost in current technologies.

In this paper, we follow this line of work and investigate the implementa-
tion properties of a recent Pseudo-Random Function (PRF) candidate called
SPRING [3,4]. Based on the “Learning with Rounding” assumption, it enjoys
(i) compared to the pairings in [23], having underlying operations that can be
implemented quite efficiently in software, and (ii) compared to Lapin, the advan-
tages of a being deterministic. Besides, and as a PRF, SPRING also corresponds
to a stronger and more generic primitive (potentially exploitable for encryption,
authentication and hashing). Our contributions are twofold.

We start by describing and evaluating the hardware performance of SPRING
within modern FPGAs. For this purpose, we take advantage of its BCH variant
described at FSE 2014 and exploit a couple of optimizations, that essentially
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turn our architecture into a combination of a subset-sum, some Fast Fourier
Transforms (FFTs), a rounding step and a BCH code. We show that these op-
erations combine nicely and produce overall performance that is sufficient for a
wide range of applications – though still substantially lower than that of AES.

Next, and as part of our motivation relates to physically protected implemen-
tation, we also study the extent to which countermeasures against side-channel
attacks can be efficiently implemented for SPRING, leading to contrasted con-
clusions. First, we show that the subset-sum part of our architecture can be
masked just as efficiently as Lapin (i.e., independently for each share, with lin-
ear overhead). Unfortunately (and quite naturally for a PRF candidate), the rest
of its operations are non-linear with respect to the masking scheme, and imply
more significant overhead. In this context, we investigate two possible solutions.
On the one hand, we estimate the cost of a fully masked implementation, for
which the performance is (asymptotically) similar to that of AES. On the other
hand, we analyze the cost of a hybrid architecture, where only part of the design
is masked and the rest is protected with other means (shuffling, typically). We
informally argue about the relevance of this proposal in two directions. First, we
observe that standard Differential Power Analysis (DPA) is not possible after the
subset-sum operation, because the intermediate computation depends on all the
key bits from this point on (so it cannot be enumerated anymore). Secondly, we
observe that unmasking before the rounding step will be (theoretically) secure
if the leakage function is “rounding” the intermediate values in an appropriate
way. In both cases, these arguments suggest that security against Simple Power
Analysis (SPA) are sufficient for this part of the design, and we evaluate the cost
of a candidate implementation based on this principle.

Overall, our results confirm that SPRING is an interesting family of PRFs for
general applications. We also believe that the hybrid countermeasure strategy,
that we suggest, is a promising alternative to a secure and efficient implementa-
tion, and it leads to interesting open problems. To some extent, it can be viewed
as an instantiation of the fresh re-keying scheme in [24], which also combines a
DPA-secure linear part with a SPA-secure non-linear one (so connections with
such schemes would be interesting to formalize). They also question the fami-
lies of rounding functions that lead to side-channel resistant PRFs with partial
masking, and whether these functions can be implemented physically by a leak-
age function (possibly as an engineering constraint).

The rest of the paper is structured as follows. Section 2 contains the specifica-
tions of SPRING, Section 3 describes its FPGA implementation, and Section 4
discusses its side-channel resistance.

2 SPRING Specifications

2.1 The SPRING Family of Pseudo-random Functions

One of the main constructions in [4] is a class of PRF candidates called SPRING
which is short for “subset-product with rounding over a ring.” Let n be a power
of two, and let R denote the polynomial ring R := Z[X ]/(Xn+1), which is known
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as the 2nth cyclotomic ring.1 For a positive integer q, let Rq denote the quotient
ring:

Rq := R/qR = Zq[X ]/(Xn + 1),

i.e., the ring of polynomials in X with coefficients in Zq , where addition and
multiplication are modulo both Xn + 1 and q. (For ring elements r(X) in R or
Rq, the indeterminate X is usually suppressed.) Let R∗

q denote the multiplicative
group of units (invertible elements) in Rq.

For a positive integer k, the SPRING family is the set of functions Fa,s :

{0, 1}k → {0, 1}m indexed by a unit a ∈ R∗
q and a vector s = (s1, . . . , sk) ∈ (R∗

q)
k

of units. The function is defined as the “rounded subset-product”:

Fs(x1, . . . , xk) := S

(
a ·

k∏
i=1

sxi

i

)
, (1)

where S : Rq → {0, 1}m for some m ≤ n is an appropriate “rounding” function.
For example, BPR considers the floor rounding function that maps each of its
input’s n coefficients to Z2 = {0, 1}, depending on whether the coefficient (in its
canonical form in Z257) is smaller than q/2 or not.

It is proved in [4] that when a and si are drawn from appropriate distributions,
and q is sufficiently large, the above function family is a secure PRF family,
assuming that the “ring learning with errors” (ring-LWE) problem [20] is hard
in Rq.

2.2 Implementation Details: Our Chosen Construction

In the following we describe an optimized FPGA implementation of the SPRING
PRF family based on the parameters suggested in [3]. These parameters offer
high levels of concrete security against known classes of attacks, and lead to
efficient implementations. A discussion and more thorough theoretical analysis
of these parameters can be found in [3]. Note that this choice is just one of
the possible instantiations of the SPRING family. We use it as a case study to
show our hardware implementation and side-channel resistance techniques and
to evaluate performance. We also suggest ways to secure the computation from
leakage of the key by methods of masking (which seem to match the homomor-
phic characteristics in the subset-sum part of the SPRING PRF quite elegantly)
and alternative countermeasures.

Aiming to design practical functions, the SPRING family can be instanti-
ated with relatively small moduli q, rather than the large ones required by the
theoretical security reductions in [4]. This allows following the same basic con-
struction paradigm as in [4], while taking advantage of the fast integer arithmetic
operations. In this paper we follow suit the parameters chosen in [3]:

1 It is the 2nth cyclotomic ring because the complex roots of Xn + 1 are all the 2nth
primitive roots of unity. The BPR functions can be defined over other cyclotomic
rings as well, but in this work we restrict to powers of two for simplicity and efficiency.
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n = 128, q = 257, k = 64,

which yields attractive performance, and allows for a comfortable margin of se-
curity. The choice of modulus q = 257 is akin to the one made in SWIFFT, for a
practical instantiation of a theoretically sound lattice-based collision-resistant
hash function [19]. Also as in SWIFFT, our implementations build on Fast
Fourier Transform-like algorithms modulo q = 257.

Choosing an odd modulus q = 257 admits very fast subset-product computa-
tions in R∗

q using Fast Fourier Transform-type techniques (as mentioned above).
However, because q is odd, any rounding function �·" : Rq → R2, applied to in-
dividual coefficients separately, has bias 1/q on each of the output bits. Since q
is rather small, such a bias is easily noticeable. This poses no problem at all if
SPRING is used for authentication schemes. Nevertheless, it clearly renders the
function insecure as a PRF.

To reduce bias, a post-processing step G is implemented by using dual BCH
error-correcting code: S(b1, . . . , bn) = G(�b1, . . . , bn"), where �·" is applied point-
wise. G multiplies the 128-dimensional, 1/q-biased bit vector by the 64 × 128
generator matrix of a binary (extended) BCH error-correcting code with pa-
rameters [n,m, d] = [128, 64, 22], yielding a syndrome with respect to the dual
code. This simple and very fast “deterministic extraction” procedure (proposed
in [1]) reduces the bias exponentially in the distance d = 22 of the code, and
yields a 64-dimensional vector that is 2−145-far from uniform (when applied to a
128-dimensional bit vector of independent 1/q-biased bits). However, this comes
at the cost of outputting m = 64 bits instead of n = 128, as determined by the
rate m/n of the code.

In terms of implementation, generator matrices of BCH codes over GF (2) are
preferable, since the rows of the matrix are cyclic shifts of a single row, which
facilitates fast and simple implementation. Note that n is a power of 2, and
any BCH code over GF (2) is of length 2t − 1 for some integer t. To make the
matrix compatible with an n that is a power of two, the extended-BCH code
can be used. This extended code is obtained in a standard way by appending a
parity bit to the codewords, and it increases the code distance d by one. Finally
note that for these chosen parameters n = 128,m = 64, the BCH code with
parameters [127, 64, 21] and its extension with parameters [128, 64, 22] have the
largest known minimum distance for these specific rates. For more theoretical
details regarding the bias after applying G, we refer the reader to [3].

2.3 Implementation Details: Fast Subset-Product in Rq

The core of the SPRING algorithm is the subset-product calculation expressed
by Equation 1. Direct multiplication of polynomials of degree n is quite expen-
sive, but the computation can be efficient using properties of the carefully chosen
ring R257. Following [3], the Chinese Remainder decomposition of this ring as
Rq
∼= Zn

q given in [19] is used. More precisely, a polynomial in R257 is uniquely
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determined by its evaluation on the n-th primitive roots of unity. Denote this
isomorphism by F :

F : R257 → Zn
257, b 	→ (b(ω2i+1))n−1

i=0 ,

where ω denotes a 2n-th primitive root of unity. In particular, the multiplicative
group of units R∗

q is the set of polynomials whose F coefficients are all non-zero.
This gives the following negacyclic convolution theorem:

F(a · b) = F(a)#F(b) (2)

where · denotes the polynomial product in R257, and # is the point-wise multi-
plication of coefficients in Z257.

Moreover, F and its inverse can be efficiently implemented using an FFT-like
algorithm. More precisely, an FFT of size n over the finite field Z257 evaluates a
polynomial at all the n-th roots of unity: FFT : b 	→ (b(ω2i))n−1

i=0 (we use ω2 as
a primitive n-th root of unity). If we first multiply the coefficient of b by powers
of ω, we have:

b(ω2i+1) = b′(ω2i), where b′i = bi · ωi.

F(b) = FFT(b′),

Finally, the subset-product of SPRING can be written as:

a ·
k∏

i=1

sxi

i = F−1 (F(a)#F(sx1
1 )# · · · # F(sxk

k )) . (3)

The value of the bit xi determines whether polynomial si is involved in the
subset-product multiplication: sxi

i is either si or 1. In practice, indices with
xi = 0 are just removed from the product. Using the convolution theorem,
the polynomial subset-product is computed by multiplying the F evaluations
point-wise and transforming the result back by F−1. The F evaluations can be
computed just once beforehand, and stored instead of the polynomials. Applying
F on the a and si, we obtain these sequences:

F (a0, a1, . . . , an−1) = [A0, A1, . . . , An−1] ,

F (si,0, si,1, . . . , si,n−1) = [Si,0, Si,1, . . . , Si,n−1] , ∀i ∈ {1, . . . , k}.

We can further simplify the implementation by storing only the discrete logs of
the sequences A and Si using a suitable generator element G (we have chosen

G = 3). We denote those sequences as Â and Ŝi, and the exponentiation as E :

[A0, A1, . . . , An−1] = E(Â) =
[
GÂ0 , GÂ1 , . . . , GÂn−1

]
,

[Si,0, Si,1, . . . , Si,n−1] = E(Ŝi) =
[
GŜi,0 , GŜi,1 , . . . , GŜi,n−1

]
, ∀i ∈ {1, . . . , k}.
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Note the entries Aj and Si,j are all non-zero because a and the si’s are units
in R257. If the key is stored in this form, the subset-product in SPRING can be
computed very efficiently:

a ·
k∏

i=1

sxi

i = F−1

(
E
(
Â+

∑
xi=1

Ŝi

))
, (4)

where the addition is a point-wise modulo 256.

2.4 Implementation Details: Counter and Gray-Code Mode

As in [3], we focus on implementing SPRING in a counter-like (CTR) mode.
This mode uses Gray code, which is a simple way of ordering the strings in
{0, 1}k so that successive strings differ in only one position. Then, when running

SPRING in counter mode, we store the value B̂ = Â+
∑

xi=1 Ŝi and we update

this additive state by adding or removing a secret key elements Ŝi. Thus, much
of the work across consecutive evaluations is amortized.

More precisely, B̂ is initialized to zero (the Gray code starts with 0k). For each
iteration, if the next input x′ flips the ith bit of x, then the old subset-product
is updated to B̂′ = B̂ + Ŝi if xi = 0, otherwise B̂′ = B̂ − Ŝi.

2.5 Operations in SPRING

Thanks to those optimizations, the SPRING evaluations in CRT mode are now
reduced to a few simple operations. In the following description, steps 1–3 com-
pute the subset product b := a

∏n
i=1 s

xi

i , and steps 4–5 perform the rounding
function S(b):

1. Update the additive state B̂: B̂ ← B̂ ± Âi, where i is the flipped bit in the
Gray counter

2. Compute the polynomial evaluation of b as B = [GB̂0 , GB̂1 , . . . , GB̂n−1 ]
3. Interpolate the product by computing F−1(B)

– Compute b′ = FFT−1(B)
– Deduce b with bi = b

′
i · ω−i

4. Round the coefficient of b
5. Apply the BCH code

3 FPGA Implementation

In this section we discuss our design choices for unprotected SPRING-BCH (later
just SPRING). We present a SPRING co-processor implementation and report
its area and timing performance.
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KMEM
64x(128x8b)

8x8b 8x8b+

16x9b

Exp2Coef

FFT128 · 
16x9b

REGBCH
16x1b128b

OUT64b

CTRL

IN

64b

Fig. 1. Spring hardware implemenation

3.1 General Architecture

Our implementation is depicted in Fig. 1. All arithmetic operations in SPRING
are computed modulo q = 257 except for the arithmetic operations on expo-
nents which are calculated modulo q− 1 = 256. The secret key polynomial FFT
coefficients Â and Ŝi (in discrete log form) are stored in true dual port memory
KMEM. Each KMEM channel can output 8 exponents (8-bit words) in parallel.

The subset-sum unit (that we detail next) computes addition/subtraction
of two polynomials on 8 exponents in parallel, and the results are stored in
KMEM. Subsequently, 16 exponents are read from KMEM using both channels
and transformed to 9-bit words (representing polynomial evaluations) using table
lookups (denoted by Exp2Coef). Next these data are partially processed by the
FFT unit (that we also detail next) and stored in its internal registers. This
way, in only 8 clock cycles all 128 evaluations are transformed to the polynomial
coefficients and stored in the FFT register. When the FFT128 is completed, the
resulting 9-bit coefficients are rounded point-wise in 16-coefficient chunks. The
floor rounding function replaces each 9 coefficient bits by 1 bit as follows: if a
coefficient value is in the range of 0 to 128 the resulting bit equals 0; if a value
is in the range of 129 to 256 the resulting bit equals 1. In each clock cycle, 16
rounded 1-bit coefficients are stored in the output data register REG. When all
128 bits are present in REG, they are compressed by the BCH unit to output
64 bits.

3.2 Calculation of Subset-Product

We follow the description of Section 2.3 to implement the subset-product as a
subset-sum of exponents, followed by an exponentiation, and the F−1 transform.
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We store the coefficient sequences Â and Ŝi in RAM during FPGA configura-
tion. Thus, only the point-wise subset-sum, exponentiation with G (using lookup
tables) and F−1 operations have to be implemented in hardware. Unlike direct
coefficient representation using 9-bit words, the range of exponents is between 0
and 255, thus the exponents are represented using only 8-bit words. Interestingly,
the subset-sum of such exponents involves reduction by 256 instead of 257, which
is implemented by simply ignoring the most significant bit (carry) generated by
the addition. Moreover, the FFT−1 differs from FFT by multiplication with the
constant n−1 which is included in KMEM’s initialization data. This way, the
FFT−1 unit can be replaced by a more simple FFT unit.

3.3 Fast Fourier Transform

The FFT on 128 coefficients2 in parallel is relatively expensive to implement.
Instead, we decompose such an FFT unit to smaller FFT blocks. The FFT128

decomposition is illustrated in the left side of Fig. 2, where the input sequence
of 128 coefficients is organized in a 2 × 64 (row-major) matrix processed in
16-coefficient chunks. After transposing this matrix, an FFT64 is computed on
both columns. The results of the two FFT64 blocks are multiplied by powers
of a suitable primitive root of unity ω (we have selected ω = 139), i.e. ωi·j for
0 ≤ i < 64 and 0 ≤ j < 2. Note, that first 64 powers (with j = 0) of ω are
equal to 1, thus no multiplication is required. Although, multiplication with ω
powers is part of the FFT128 computation, it is placed inside the FFT64 block
for convenience. Next, an FFT2 is computed on each row. Finally, the column-
major matrix is transposed back to a row-major one and the resulting matrix
represents the result of the FFT128 transform. Note that the transposition steps
are not shown in Fig. 2, because they are either implemented as a wire crossings
(for free in hardware) or they are pre-computed during KMEM initialization.

FFT64. In order to simplify the implementation, an FFT64 block is decom-
posed even further (see Fig. 2), by organizing the 64 input coefficients in an
8 × 8 square matrix. Subsequently, the matrix is transposed (part of KMEM
initialization), FFT8 is computed on all 8 rows sequentially, and the result is
multiplied by powers of a suitable primitive root of unity Ω = ω2 (for ω = 139
we have selected Ω = 1392 mod 257 = 46), i.e. Ωi·j for 0 ≤ i < 8 and 0 ≤ j < 8.
The multiplication results form a new matrix that is stored in the FFT register.
Subsequently, this matrix is transposed and stored back in the register. Eventu-
ally, FFT8 operations (described next) are performed on all 8 rows sequentially.
Their result is multiplied with ω powers (as part of the FFT128 computation)
and stored back in the FFT register.

FFT8. The basic building block of FFT64 is FFT8, which is implemented with
combinatorial logic only. FFT8 is composed of three layers of four FFT2 butter-

2 Actually, the input to FFT−1 is the polynomial evaluations and the output is the
coefficients, but we refer to both as coefficients for simplicity.
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Fig. 2. Decomposition of Fast Fourier Transform operating with 128 coefficients

flies, and multiplications by powers of a root of unity. Each butterfly performs
one addition and one subtraction. The root of unity ω16 = 4 is chosen so that
all those constants are powers of two, and can be implemented as shift, as il-
lustrated in Fig. 2. Although the implementation of addition and subtraction
is straightforward, the multiplication with a constant could be relatively expen-
sive in Z257. However, q = 257 is a Fermat prime number F3 = 22

3

+ 1 = 257,
thus several interesting properties of arithmetic modulo Fermat numbers can be
used to significantly simplify the implementation. Following the description by
H. Nussbaumer [26], we introduced an encoding of each 9-bit coefficient c to C
as follows:

C = (256− c) mod 257. (5)

This encoding reduces multiplications inside FFT8 into simple bit rotations
around the 9-bit word, with complementation of the overflowing bits.

3.4 Cost and Performance Evaluation

We have synthesized our SPRING co-processor using Xilinx ISE 12.4 for Xilinx
Virtex-6 XC6VLX240T FPGAs. The implementation results are summarized in
Table 1. KMEM was organized in two 36 kb true dual-port RAMs. As expected,
FFT128 occupies 76% of the SPRING area. Inside FFT128, two blocks of Ωi·j

constant multipliers and one block of ωi·j constant multipliers utilizes most of
the resources (roughly 69% of the FFT128). Since these blocks are combinato-
rial, they are implemented using lookup tables. The two FFT8 blocks constitute
17% of FFT128. Next, the two FFT registers storing 1152 bits of the FFT
state occupy roughly 9% of the FFT128 unit. This optimization was achieved
using the distributed RAM strategy (only slices are used, no dedicated BRAMs).
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Table 1. Resource usage of the SPRING implementation

Units Slices BRAM(36kb)

KMEM 0 2
Subset-sum 16 0
Exp2Coef 128 0
FFT128 total 1258 0
→ 2x FFT8 210 0
→ 2x FFT REG + transpose 110 0
→ 2x Mult. Ωi·j 496 0
→ 1x Mult. ωi·j 378 0
→ 8x FFT2 64 0
Rounding + REG 32 0
BCH 189 0
Control logic 27 0

SPRING - Total 1650 2

Other SPRING parts are relatively small. In total, SPRING occupies 1650 slices
which is only 4% of the available FPGA resources.

As far as speed performance is concerned, SPRING was designed to operate
without idle states in the Gray counter mode. Computation starts by sequen-
tially reading rows of 16 exponents from KMEM. These row exponents are first
converted to coefficients, each half of them being processed by one of the two
FFT8 blocks, then multiplied with corresponding powers of Ω, and stored in the
two FFT registers. All these operations together are executed in only one clock
cycle. Subsequently, the same operations are performed on the other 7 rows.
Together, all 8 rows are processed in only 8 clock cycles. Next, both FFT regis-
ters are transposed in 12 clock cycles. The new 8 rows are processed by the two
FFT8 blocks, multiplied with corresponding powers of ω and stored back to the
two FFT registers in 8 clock cycles. In the subsequent 8 clock cycles, 8 parallel
FFT2’s are computed on 8 rows. Then, all 9-bit coefficients are rounded to 1-bit
coefficients and stored in the 128-bit register. The SPRING output is finally ob-
tained by post-processing the combinatorial BCH unit on this register data. In
parallel with the last 28 cycles, a new subset-sum is calculated. Since the subset-
sum calculation requires 32 clock cycles, 4 extra clock cycles are necessary. This
way, one SPRING execution with subset-sum pre-calculation requires 40 clock
cycles. Such a result illustrates the usual trade-off between generic software and
specialized hardware. In particular, it outperforms the FSE 2014 software im-
plementation on Intel Core i7 Ivy Bridge (392 clock cycles per one encryption)
by an approximate factor 10.

Besides, the maximum operating clock frequency for the selected FPGA device
was estimated at 91.7 MHz. This seemed to be a good trade-off between speed
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and implementation size3. Assuming this clock frequency and continuous Gray
counter mode operation, 2.3 million encryptions can be carried out in 1 second,
which corresponds to a 140 megabits/second throughput.

For illustration purposes, we reported the performances of SPRING and a cou-
ple of representative algorithms in Table 2. While not directly comparable, they
provide insights about the implementation cost of other recent primitives based
on the Learning with Errors problem (yet, used for different purposes such as
authentication or public-key encryption) and the AES Rijndael (which although
based on totally different assumptions, aims at a similar goal as SPRING, namely
PRP). As expected, the performance gap between our SPRING design and AES
ones is slightly larger than in a software context, essentially because there are
more computation units to implement here. Yet, the cost vs. performance trade-
off obtained (in the hundreds of megabits/second range for a few %’s of the
FPGA resources) is already sufficient for a wide range of applications.

Table 2. Comparison of different algorithms implemented on a Virtex 6 FPGA

Alg. Type Dapath LUT FF BRAM DSP Fmax
1 Cycles

SPRING PRF 128/144b 7292 294 2x 36k 0 91.7 40

Lapin [10] auth. 128b 742 140 6x 36k 0 140.3 1332
Comp-LWE [30] PKE N/A 1879 1142 3x 18k 1 250.0 13287 2

AES-LUT [9] PRP 128b 933 399 10x 18k 0 674.0 11
AES-COMB [9] PRP 128b 2335 535 0 0 218.6 11
AES-COMB [9] PRP 32b 467 976 0 0 315.1 58

1 Maximum frequency is denoted in MHz.
2 Number of clock cycles for encryption only.

4 Towards Side-Channel Resistance

We now move to the second part of our investigation, and discuss two possible
approaches to side-channel resistance for hardware implementations of SPRING.
The first one takes advantage of standard solutions for masking (a.k.a. secret
sharing). As we detail next, it implies more significant overhead for certain parts
of the computation than others. Motivated by this observation, we then suggest
an alternative approach, where only one part of the implementation is masked,
and the other one is shuffled. We show that this alternative is very efficient; we
argue about its relevance and suggest open problems based on it.

3 The clock frequency could indeed be higher if the long combinatorial paths were split
by pipelining. However, this would result in a substantially larger implementation
and latency.
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4.1 Fully Masked Design

In this first subsection, we show how to secure the computation of SPRING from
leakage of key by means of masking. For this purpose, the key is initially split
into random-looking shares that are refreshed before each execution, and the
computation is made on each of the shares separately. We next refer to the parts
of the hardware which handle the computations on specific shares as parties. Let
d denote the number of parties. The main intuition behind masking is that no
information on the original key can be obtained from the computation of less
than d parties.

We start by sketching the different steps of a masked SPRING computation.

1. A synchronization step is required to refresh the key shares that are stored in
discrete-log (of FFT evaluations) format. For this purpose, a usual strategy
is to add a random sharing of zero to the d additive shares stored in memory.

2. The parties compute their subset-sum locally by using only their share, or
they update the subset-sum according to the Gray code counter.

3. The parties change their additive shares of the subset-sum to multiplicative
shares of the corresponding subset-product by locally using the Exp2Coef
lookup table.

4. A second synchronization step converts the parties’ current multiplicative
shares into additive shares of the same value. We refer to this unit as
MM2AM.

5. The parties locally use the FFT unit on their shares of the computation.
6. A last synchronization step is used for the rounding. The parties now have

additive shares of the polynomial subset-product in Equation 1. They com-
pute XOR shares of the rounding bit of the coefficients.

7. The parties apply the (linear) binary BCH transformation on their shares
locally.

8. Finally, the parties now have XOR shares of the SPRING evaluation. These
bits are XORed to obtain the output.

We now describe the whole secure masked computation more extensively.
The process starts with a standard refreshing of the pre-shared key, which is

stored as discrete logs of outputs of the FFT procedure on the polynomials a, s.
As a result, the parties get numbers whose sum modulo 256 corresponds to an
original discrete log in the key. As the first step of the SPRING computation is
merely a subset-sum of the key (or an update of it according to the Gray-code
counter), each of the parties can compute this subset-sum locally and indepen-
dently. This unit for each of the parties is identical to the corresponding one in
the unprotected SPRING implementation. After this computation, each of the
parties has an additive share of the subset-sum (modulo 256).

The next unit in the original computation is the Exp2Coef lookup table.
This table is used for putting the discrete logs in Z256 into the exponent to
get FFT outputs in Z∗

257. We apply exactly the same lookup table locally in
the computation of each of the parties in parallel. After passing the subset-sum
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results in the Exp2Coef lookup table, the parties hold point-wise multiplicative
shares (modulo 257) of the corresponding subset-product.

Following, the original SPRING evaluation performs the FFT unit. Notice
that it is an additively-linear operation, but currently the parties hold multi-
plicative masking shares of the computation. We apply a synchronization step
to convert the multiplicative shares back to additive ones. The unit responsible
for this step is denoted by MM2AM.

For this purpose, we use the technique suggested by Ghodosi et al. in [13].4

This procedure is applied for each entry independently. The MM2AM unit gets
in advance random bits and uses them to generate d2 random-looking numbers
in Z∗

257, such that:
d−1∑
j=0

d−1∏
i=0

αi,j = 1 (mod 257).

This is easily obtained because we achieve a random number in Z∗
257 by adding

1 to an 8-bit random number, and because we can randomize d2 − 1 numbers
and compute r0,0 so the equation holds. For each 0 ≤ i < d, the MM2AM unit
provides party i with the numbers {αi,j}j=0,...d−1 as auxiliary information. This
information is independent from the shares so it can be achieved before the
computation reaches the Exp2Coef step. Once the parties get the multiplicative
shares {mi}i=0,...,d−1 of the subset-product, each party i sends the value mi ·αi,j

to party j. Next, each party j computes the multiplication cj =
∏d−1

i=0 mi · αi,j

(mod 257) as its additive share of the entry. Note that:

d−1∑
j=0

cj =

d−1∑
j=0

(
d−1∏
i=0

mi

)
·
(

d−1∏
i=0

αi,j

)
,

=

(
d−1∏
i=0

mi

)
·
⎛⎝d−1∑

j=0

d−1∏
i=0

αi,j

⎞⎠ ,
=

d−1∏
i=0

mi (mod 257).

Therefore, the parties now have additive masking shares of this step of the
computation. Taking advantage of these additive shares, the implementation
can perform the (linear) FFT units locally and in parallel. They are identical to
the corresponding units in the original unprotected SPRING implementation.

As a result, the parties have additive shares of the polynomial subset-product.
It therefore remains to compute the rounding function. We use a masked round-
ing unit for this purpose, such that its output for each party is a XOR random
share of the actual rounding value. We describe the computation of rounding on

4 Other techniques for share conversion exist. The side-channel literature usually refers
to [12] for such a task, but the algorithms in this reference are quite sequential. We
focus on the approach suggested in [13] which seems easier to parallelize and simpler
in our hardware context.
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a single coefficient. This process is repeated for all n coefficients of the subset-
product. The unit deals in advance random shifts {ti}i=0,...,d−1 ∈ Zd

257 to the
parties. Each party is also provided with a pre-generated random-looking table
TABi ∈ {0, 1}257. For each i ≥ 1 the table is merely a random bit array of size
257. The table of party 0 satisfies:

TAB0[v] =

d−1⊕
i=1

TABi[v]⊕
⌊
v −

d−1∑
i=0

ti

⌉
(mod 257) ∀v ∈ Z257, (6)

where ⊕ is the XOR operator in Z2.
Let vi be the additive share of a single coefficient v kept by party i, as com-

puted by the FFT unit. Party i shares vi+ ti with all the other parties. Next, all
parties compute the sum

∑
(vi + ti) = v +

∑
ti, and use bi = TAB[v +

∑
ti] as

their share of the coefficient’s rounding output. We note that
⊕d−1

i=0 bi is indeed
the rounded bit of v due to generation of the tables described in Equation 6.

Eventually, asBCH is a linear transformation of the rounding output, the parties
compute their shares locally and independently again, using an identical instance
of this unit for each party. As a result, all parties have a XOR-share of the PRF
evaluation.

Implementation and Cost Estimation: The implementation of the fully
masked SPRING is depicted in Fig. 3. It operates with d shares in parallel. Es-
sentially, its datapath is composed of d (modified) datapaths of the unprotected
SPRING, where mask refreshing, mask conversion (MM2AM) andmasked round-
ing are added. Inorder topreserve the same timing as theunprotectedSPRINGver-
sion, randommasks are added to the KMEM outputs on-the-fly and the MM2AM
and masked rounding units are implemented with combinatorial logic.

The cost estimation of these three new units is summarized in Tab. 3. As
can be observed, the impact of mask refreshing is negligible. Moreover, its size
increases linearly with the number of shares. The other two units are more ex-
pensive. For example, in case of a two-share implementation, the mask conver-
sion MM2AM requires 527 slices, whereas masked rounding requires 1321 slices.
Furthermore, the size of MM2AM increases quadratically d. This is caused by a
substantial increase of the number of multiplications performed inside MM2AM.
Interestingly, the masked rounding does not utilize expensive multiplications,
and so its size increases linearly with d.

Note that Tab. 3 illustrates the costs to protect one 8-bit sensitive exponent
or one 9-bit entry (either a polynomial evaluation before the FFT−1 step or a
polynomial coefficient after this step). However, the implementation illustrated
in Fig. 3 operates on 16d exponents/coefficients in parallel. Thus, if implemented,
these units would increase SPRING size substantially (just as generally observed
for masked implementations of block ciphers).

4.2 Partially Masked Design

In view of the previous estimations, it appears that certain parts of the SPRING
design (namely, until the FFT computation) are very easy to mask, while the
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Table 3. Estimated costs ofbasic operations (dependent ond) necessary formask refresh-
ing, d-share multipl. to additive masking conv. and masked rounding of one 9-bit entry.

Basic operations Random Total # of slices
ADD MUL INV MUX2 XOR bits. d = 2 d = 3 d = 4 d = 5

Msk. refresh d− 2 0 0 0 0 8(d− 1) 3 5 6 7
MM2AM[13] d− 2 3d2 − 2d d 0 0 8(d2 − 1) 527 1353 2551 4121
Msk. round 3d− 2 0 0 256d d− 1 266d − 257 1321 1409 1473 1894

Fig. 3. Fully masked implementation Fig. 4. Partially masked implementation

remaining ones imply the usual (quadratic) overhead of non-linear operations. In
this context, an appealing solution from the performance point of view would be
to unmask the implementation just before these non-linear steps, as illustrated
in Fig. 4. Quite naturally, this raises the question whether the partially masked
design becomes insecure at this point. We conclude this paper with two simple
arguments in favor of such a hybrid strategy.

First, observe that the standard DPA attacks (defined in [21]), that are at the
core of most physical security evaluation procedures nowadays, are inherently
limited to the exploitation of the leakages corresponding to operations that can
be predicted (i.e., that depend on an enumerable part of the key). In the case of
SPRING, such operations only appear at the beginning of the encryption, since
diffusion is complete after the subset-sum computation. As a result, it could
be sufficient to protect this part of the implementation against DPA, and the
remaining ones against (single-trace) SPA. (As mentioned in the introduction,
such an idea is reminiscent of fresh re-keying schemes[24].) Interestingly, several
cheaper solutions exist for this purpose.
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For example, shuffling is a usual countermeasure against SPA. In the
case of SPRING, our implementation operates on polynomials of 128 coeffi-
cients/exponents, but only 16 are processed in parallel (one row). Therefore, 8
consecutive calculations (per row) are necessary to process the full 128 coeffi-
cient/exponent state. Since they are computed independently, these operations
can be directly executed according to a random 8-permutation. It represents
a total of 8! = 40320 execution permutations which, combined with the high
(algorithmic) noise of our hardware design, should prevent SPA.

Concretely, the eight entry rows are easily shuffled by being read from KMEM
in a random order. This involves only small changes in the control logic. Hence
its impact on the SPRING implementation size is negligible. The only parts that
need modification are the matrix transpose and FFT-REG inside each FFT64.
However, this modification only increases the size of both by 24 slices. Further-
more, shuffling can be preserved up to the REG unit, where the rows have to be
stored in a correct position. This operation de-shuffles the state for free.

As can be observed, shuffling presents a very powerful cost-efficient countermea-
sure. For this reason, we have decided to implement this approach in the masked
SPRING implementation. Moreover, only the linear part of SPRING (i.e. subset-
sum) is protected by the masking countermeasure. This way, linear increase of the
number of shares is reflected in the linear increase of implementation size.

To conclude, let us also observe that, depending on the leakage function, un-
masking the last part of the design could simply be secure as such. For example,
imagine a leakage function that would “round” the intermediate values, just as
required by the SPRING specifications. Then, having unmasked data after the
FFT computations would not be a problem at all. Quite naturally, actual leak-
age functions do not round as proposed in [3,4]. Yet, they usually compress the
input range to some extent (e.g. with a Hamming weight function). Furthermore,
technology-level countermeasures such as dual-rail logic styles can generally be
used to modify the shape of the leakage functions [32]. As a result, it is an
interesting open problem to find whether there is a common ground for pro-
tected implementation of rounded operations, between theoretical requirements
and practical engineering constraints.
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